Convex hulls in 2D

The problem: Given a set P of n points in the plane, find their convex hull.

Properties of the convex hull

- A point is on the CH if and only of it is *extreme* (a point p is extreme if there exists a line l through it such that all other points are on or on one side of l).
- An edge is on the CH if and only of it is *extreme* (a line l is extreme if all points in P are on or on one side of it).
- A point p is not on the CH if and only if p is contained in the interior of a triangle formed by three other points of P.
- The points with minimum/maximum x-coordinate are on the CH.
- The points with minimum/maximum y-coordinate are on the CH.
- Walking counter-clockwise (ccw) on the boundary of the CH you make only left turns.
- Consider a point p inside the CH. The points on the boundary of the CH are encountered in sorted radial order wrt p.

Algorithm: Brute force

Idea: Find all extreme edges

Algorithm BruteForce (input: points ${\cal P})$

- for all distinct pairs of points (p_i, p_j) :
	- if edge (p_i, p_j) is extreme, output it as CH edge

Questions:

- $\bullet\,$ How do you check if an edge is extreme, and how fast?
- What is the overall running time of Algorithm BruteForce?

Algorithm: Gift wrapping

Idea: start from a point p guaranteed to be on the CH and find the edge pq of the CH starting at p ; repeat from q .

Algorithm GiftWrapping (input: points P) • initialize $CH = \{\}$ • Let p_0 be the point with smallest x-coordinate (if more than one, pick right-most). $CH.append(p_0)$. • Find the point p with smallest slope wrt p_0 . CH.append (p) . • repeat for each point $p'(p') = p$: compute ccw angle of p' wrt the previous edge on the CH let q be the point with smallest such angle //claim: edge (p, q) is on the CH, where p is the last point on the CH $CH.append(q)$ • until $q == p_0$

Questions:

- 1. Run Gift Wrapping on a set of points and check how it works. Assume no degenerate cases (no collinear points).
- 2. What is the running time of Algorithm Gift Wrapping? Express the running time as function of n (input size) and k, where k is the output size (in this case, the size of the CH).

Note: An algorithm whose running time depends on the output size is called an outputsensitive algorithm.

- 3. How big/small can k be for a set of n points? Show examples.
- 4. What are the best and worst-case bounds for Gift Wrapping?
- 5. When is GiftWrapping is a good choice?

Algorithm: QuickHull

Idea: Similar to Quicksort. Partition the points carefully, then recurse.

Algorithm QuickHull (input: points P)

- Find left-most point a and right-most point b
- Partition P into P_1 (points left of ab) and P_2 (points right of ab)
- return $\text{QuickHull}(a, b, P_1) + \text{QuickHull}(b, a, P_2)$

 $QuickHull(a, b, P)$ $//P$ is a set of points all left of ab //returns the upper hull of P

- if P is empty: return emptyset
- for each point $p \in P$: compute its distance to ab
- let c be the point with max distance
- let P_1 = points to the left of ac
- let P_2 = points to the left of cb
- return QuickHull $(a, c, P_1) + c +$ QuickHull (c, b, P_2)

Questions:

- 1. Run QuickHull and check how it works. Assume no degenerate cases (no collinear points).
- 2. Write a recurrence for its running time.
- 3. What is the best case running time of QuickHull, and when might it happen?
- 4. What is the worst case running time of QuickHull, and when might it happen?
- 5. Consider the caase when the points are uniformly distributed. What is the average/expected complexity of Quickhull in this case?

Algorithm: Graham scan

Idea: start from a point p interior to the hull. Order all points by their ccw angle wrt p and traverse them. Maintain the CH of all points traversed so far and add the next point to it.

Algorithm GrahamScan (input: points P)

- Find interior point p_0 (instead of an interior point, can pick the lowest point)
- Sort all other points ccw around p_0 ; denote them $p_1, p_2, ... p_{n-1}$ in this order.
- Initialize stack $S = (p_2, p_1)$
- $\bullet\,$ for $i=3$ to n-1 do

- if p_i is left of (second(S), first(S)): push p_i on S

- else:
	- ∗ repeat: pop S while p_i is right of (second(S), first(S))
	- ∗ push pⁱ on S

Questions:

- 1. Run Graham-scan on a small set of points and check how it works. Assume no degenerate cases.
- 2. Argue that once the points are sorted, the algorithm takes linear time.
- 3. What are the degenerate cases for Graham-scan, and how do you extend the algorithm to handle these cases?