## The closest pair of points in the plane

The problem: Given an array $P$ of $n$ points in the plane, find the closest pair. In case of ties, choose arbitrarily. Assume that the distance between two points $p, q$ is given by the Euclidian distance, $d(p, q)=\sqrt{\left(p_{x}-q_{x}\right)^{2}+\left(p_{y}-q_{y}\right)^{2}}$.

## Problems/exercises

1. Formulate the 1D version of the closest pair. How can you solve it, and how fast? Try to extend this solution to the 2D problem: does it work?

For the remaining problems we consider the 2 D version of the probleme.
2. Consider a point $p \in P$. Show that, in order for a point $q$ to be within distance $d$ from $p$, then both the horizontal and vertical distance between $p$ and $q$ must be smaller than $d$.
(Hint: assume, by contradiction, that this was not true, and show this leads to a logical impossibility )
3. Describe how you can find a vertical line $L$ that splits $P$ in half. How long does this take?
4. Show an example where the strip of width $d$ around the middle vertical line $L$ may contain $\Omega(n)$ points. What does this mean for the running time of the algorithm? Write a recurrence.
5. Consider the (refined) divide-and-conquer algorithm which takes as arguments the points in $P$ sorted in two ways: let $P_{X}$ and $P_{Y}$ denote the points in $P$ sorted by their x- and y-coordinates, respectively. Furthermore, let $L$ be the vertical line that splits $P$ into two halves, and let $P_{1}$ and $P_{2}$ be the set of points in $P$ to the left/right of this line, respectively.
(a) Given $P_{X}$ and $P_{Y}$, how can you find the x-coordinate of line $L$ ?
(b) Given $P_{X}$ and $P_{Y}$, how can you find $P_{1 X}$ (the points in $P_{1}$ sorted by their x-coordinates) and $P_{2 X}$ (the points in $P_{2}$ sorted by their x-coordinates)?
(c) Given $P_{X}$ and $P_{Y}$, how can you find $P_{1 Y}$ (the points in $P_{1}$ sorted by their y-coordinates) and $P_{2 Y}$ (the points in $P_{2}$ sorted by their y-coordinates)?

